If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-2y=19
We move all terms to the left:
y^2-2y-(19)=0
a = 1; b = -2; c = -19;
Δ = b2-4ac
Δ = -22-4·1·(-19)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{5}}{2*1}=\frac{2-4\sqrt{5}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{5}}{2*1}=\frac{2+4\sqrt{5}}{2} $
| 8x-5=2x+2 | | (v+5)^2=5 | | 10-4(2x+8)=24 | | 21u+7=13 | | 179=49-y | | 4x–8=2(2x–3) | | 2x+1x+5+1x=36 | | 8r=2r+36 | | 8m+12m=625-5m | | 7(z+8)−2=−7(z+6) | | 6.5=-1.3b | | 7x+1x=6+5x | | 4x2-3=9 | | x+(0.667x−15)=180 | | 3x-(4x+2)=-3x+8 | | z-9/6=1 | | 6r=2r+44 | | -7x-5=-10-26 | | 13/6=1/2r+11/4r | | (3(x-4))/(12)=(2x)/(3) | | x+x+6,385=210,355 | | -2(x-4)+4x=112 | | 5(2u-4)=120 | | 0.5g=17 | | -6.6k-5.3k=11.9 | | 2z/7-6=-1 | | -10(n-6)=4(6n=6) | | 96=6m+2 | | 3/4x=450 | | x+(0.5x+3)=90 | | 7m-34=71 | | (x-2)2/3=16 |